under $1/\epsilon_r=0$ versus pressure is obtained by replotting from Fig. 8(a) as shown in Fig. 7(b), then it is found that the characteristic temperature(T_0) decreases linearly with increasing pressure. Accordingly, T_0 is expressed as follows;

$$T_0 = a_2 - \beta_2 p \tag{30}$$

where $a_2=104$ °C & $\beta_2=4.92$ °C/kbar from Fig. 7(b). By putting eq. (30) into T₀ of eq. (23) & eq. (24), the following formulas are obtained;

$$\frac{1}{\epsilon_{\rm r}} = -4C_0 (T - a_2 + \beta_2 p) + \frac{\xi^2}{\zeta} \left\{ 1 + \sqrt{1 - \frac{4\zeta C_0}{\xi^2} (T - a_2 + \beta_2 p)} \right\}$$

$$P_{\rm s}^2 = -\frac{\xi}{2\zeta} \left\{ 1 + \sqrt{1 - \frac{4\zeta C_0}{\xi^2} (T - a_2 + \beta_2 p)} \right\}$$
(31)

The temperature dependence of $1/\epsilon_r$ at pressure parameter p=7.7, 10.3 & 12.4 kbar is expressed as a solid line in Fig. 8(a) by putting the previous values of ξ & ζ at T=23 °C and above values of C_0 , a_2 & β_2 into eq. (31). The temperature dependence of P_s is also expressed similarly as a solid line in Fig. 8(b) from eq. (32). Here, since the abscissa in Fig. 8(b) is the reduced temperature (T - T_c), the characteristic curves with each pressure parameter overlap as a one line. Comparable large difference between the measured value and the calculated one is observed in Fig. 8(a). This cause is considered to be based on the temperature & pressure dependence of the coefficients C₀, \(\xi \& \xi \). Let's consider this effect subsequently. The pressure dependence of the transition temperature(T_c) must be same as that of the characteristic temperature(T₀) from eq. (25). However, the paper reports that there is some difference between dT_c/dp=-5.5°C/kbar and dT₀/dp=-4.8°C/kbar in experimental value⁶). Furthermore, though all curves which are the reduced temperature (T-T_c) versus spontaneous polarization with pressure parameters must overlap as a one line, the value of Ps decreases gradually with increasing pressure parameter like a dotted line (or the measured value) in Fig. 8(b). These facts suggest that the coefficients C_0 , ξ & ζ depend on pressure a little. However, the temperature dependence of the coefficient ζ of higher order of P_s in the expansion formula of the free energy is considered to be extremely small, and therefore, the pressure dependence of the coefficient ζ is also assumed to be extremely small. The slope C₀ is known to be independent of pressure from experimental results. Consequently, in this case, the pressure dependence of the coefficient ξ should be considered. Here, let's add the little quantity $\Delta \xi$ to the value of ξ to compensate ξ . In order to obtain the value of $\Delta \xi$, the following method is performed, that is, from eq. (21),

$$dP_{s}/dp = -g\xi/2P_{s}\sqrt{\xi^{2} - 4\xi(u + gp)}$$
(33)

still more, by substituting $\xi + \triangle \xi$ for ξ in eq. (33)

$$dP_s/dp = -g\xi/2P_s\sqrt{(\xi + \Delta \xi)^2 - 4\xi(u + gp)}$$
(34)

First, let's put p=7.7 kbar and the previous values of u,g, ξ & ζ at T=23 °C into eq. (33) & eq. (34), and put simultaneously the values of dP_s/dp obtained from the slope of the experimental curve (or the dotted line) & the calculated one (or the solid line) at p=7.7 kbar & T=23 °C in Fig. 6(b), that is, $dP_s/dp=3.80\times10^{-3}$ C/m² kbar (or the measured value) & $dP_s/dp=3.13\times10^{-3}$ C/m² kbar (or the calculated value) into eq. (34) & eq. (33) respectively. Next, let's take the ratio eq. (34) to eq. (33) in order to find the value of $\Delta\xi$; $\Delta\xi=0.373\times10^9$ m⁵/F·C². The compensated curve of $1/\epsilon_r$ versus T obtained by calculation is shown as a dot-dash-line in Fig. 8(a) by putting

 $\xi + \Delta \xi = -0.96 \times 10^9 \, \mathrm{m}^5 / \mathrm{F \cdot C^2}$ into ξ of eq. (24). In this case, the compensated quantity $\Delta \xi$ is 28% of the previous value of ξ , and the calculated value of $1/\epsilon_r$ approaches to the measured value by about 36% in comparison with the previous case.

(ii) The electric field dependence of the permittivity; The temperature dependence of the reciprocal relative permittivity of the ceramic (PbTiO₃25% + PbSnO₃75%) at atmospheric pressure obtained by the authors is shown as a dotted line in Fig. 9(a). The slope C_0 of $1/\epsilon_r$ to T in

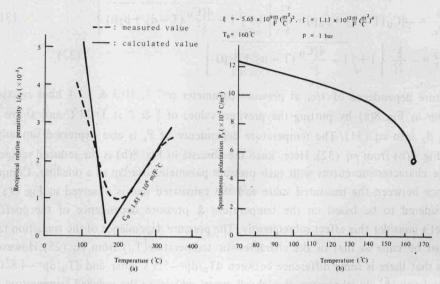


Fig. 9. The temperature dependence of (a) the reciprocal relative permittivity & (b) the spontaneous polarization of Pb(Ti(25%) + Sn(75%)) O₃ at 1 bar.

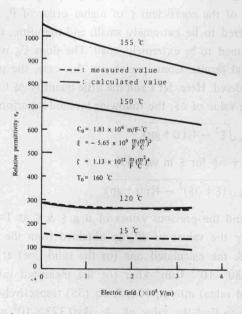


Fig. 10. Effect of external electric field on the relative permittivity of Pb(Ti(25%)+Sn(75%))O₃ under various temperatures.